
IEEE TRANSACTIONS ON MICROWAVE TE030RY AND TECHNIQUES, VOL. MTT-27, NO. 2, FEBRUARY 1979 123

plexing fitters with arbitrary amptitude and delay response,” 1976 pp. 172-181, Apr. 1976.

IEEE MTT-S Int. Microwave Synrp. Digest, IEEE Cat. no. [6] A. E. Atia, “Computer-aided design of waveguide mutiplexers,”

76CH 1087-6MTT, pp. 116-118. IEEE Trans. Microwave Theory Tech., vol. MTT-22, pp. 332--336,

[3] M. H. Chen, F. Assal, and C. Mahte, “A contiguous band multl- Mar. 1974.

plexer.” Comrat Tech. Rev.. vol. 6, no. 2, pp. 285-305, Fait 1976. [7] N. Marcuvitz Ed., Waoeguide Handbook. M.I.T. Radiation Lab.

[4] J. D. Rhodes, “Direct design of symmetrical interacting bandpass Series, vol. 10. New York: McGraw-Hitt, 1951.

channel diplexers,” Inst. Elec. Eng. Microwaves, Opt., Acousl., vol. 1, [8] S. B. Cohn, “Direct-coupled-resonator filters: Proc. IRE, voi 45,

no. 1, pp. 34–40, Sept. 1976. pp. 187-196, Feb. 1957.

[5] R. Levy, “Filters with singte transmission zeros at real or imaginary [9] R. Levy, “Theory of direct-coupled-cavity filters,” IEEE Tram.

frequencies,” IEEE Trans. Microwaoe 77zeory Tech., vol. MTT-24, Microwave Theory Tech., vol. M’M’- 15, pp. 340–348, Jhne 1967.

Tables for Nonminimum-Phase Even-Degree
Low-Pass Prototype Networks for

the Design of Microwave
Linear-Phase Filters

J. H. CLOETE, MEMBER, lEEE

AIbstrszct-The element vafues of a selection of even-degree nooroirri-

mum-phase low-pass prototype networks with eqrriripple passbmrd arnpli-

trrde and constant group delay in the least squares sense over a large

percentage of the passband are tabulated. At] the prototypes have passband

insertion loss ripple R =0.01 dB and cutoff frequency tiC = 1.0 rad/s at the

O.01-dB puint. Five tables contain the element values of networks up to

degree N =20. The tables are classified according to tbe snssnber of

transmissinrs zeros at infinite frequency NZm and the passband frequency

to which the group delay is constant in ttse least squares seose Wd. The

following combinations of NZm arsd ad are tabrstatak NZW = 2 and

c,rd==0.9; ,VZm =4 and tid =0.8; NZO = 6 and od=0.7; NZm =8 and

~J = 0.6; i~d NZ ~ =10 and Wd= 0.5, Tbe maximum phase and delay

errors for each network are tabulated. Plots of the psmsband group delay

and stopbausd insertion lass versus frcqnency, for each networkj accompany

the tables to facilitate selection of a prototype. The prototypes are suitable

for the design of narrow-baud generafii interdigital, generafk?ed direet-

corrpled cavity wavegrside, and generalii combline linear-phase filters A

simple algmitfrm for the anafysis of the prototypes is given.

I. INTRODUCTION

T

~ HE SYMMETRICAL nonminimum-phase low-pass

prototype network introduced by Rhodes [1] is shown

for the even-degree case. It is topologically suited to the

design of microwave bandpass filters capable of good

amplitude selectivity while approximating closely to linear

phase over a large percentage of the passband. The

Manuscnpt received February 13.1978: rewsed June 27, 1978.
The author was with the Department of Electrical Engineenng, Um-

versity of Stellenbosch, Stellenbosch 7600, South Africa, on leave from
the National Institute for Aeronautics and Systems Technolo~j Council
for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001,
South Africa.

Fig. 1. The symmetrical even-degree nomnmimum phase low-pass pro-

totype network consisting of lumped capacitors and ideal admittance
mverters. The notation for the network elements is consistent with the
notation used in Tables I–V.

microwave filters are realized by providing coupling

between nonadjacent resonators. Examples include the

generalized interdigital filter [2], the generalized direct-

coupled cavity waveguide filter [3]–[5] and the generalized

combline filter [6].

The first step in the design of a narrow-band microwave

linear-phase filter is to find the element values of a !low-

pass prototype which satisfies the amplitude and phase or
group delay specifications. When this step is completed

the elements in the equivalent circuit of the microwave

filter may be calculated [2], [3]. A number of approxima-

tion theories and techniques have been described for the

construction of nonminimum-phase low-pass transfer

functions from which the element values of the prototype

networks can be synthesized [1], [4], [7]–[ 10]. These

methods generally require considerable computation to

achieve a satisfactory prototype. The method of Levy [4],

applicable when only one pair of finite zeros provides
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TABLE I

ELEMENT VALUES FOR LOW-PASS PROTOTYPE
R= O.01, OC=l.O, NZ~=2, ti~=O.9

R = 0.01 db = ? .0 rad/s.ec
“c

NZ=2 = 0.9 rad/sec
m “d

4 6 8 10 12 14 16 18 20

.6851?5 0.753304 0.782136 0.797192 0.807752 0.8?5966 0,821179 0.824991 0.828059c1
K1 .171899 0.084565 0. C33982 0.022164 0.01?750 0.004081 0.001770 0.000633 0.000zol

.154307 1.297451 ? .360047 1.39? 675 1 .41322? ‘1.429582 1.439661 1.446886 1 .4526’?3

.a18960 0.281599 0.134662 0.079845 0.045321 0.019800 0.009451 0.004107 0.001550

~. 777872 ? .732~42 ‘1.759245 1.785200 ‘1.807871 ? .822790 ? .833390 1.841616

0.770867 0.375950 0.217576 0.132360 0.072683 0.03 LI?39 0.0?9972 0.008816

C2
k2
C3
K3
m 2,066781 1.779143 1.730’143 ?. 727850 3.737775 1.748043 1.756920

0.608249 0.350911 D. 232597 0.152014 0.095275 0.056647 0.029416

2. BO0655 2.185692 2.027880 1.978869 1.972029 7.976647

0.582255 0.370820 0.274870 0.2002?0 0.138688 0.086371
?.qfiqfifiq 7.1 B747q ! .953253 1.865856 1.832988

K4
C5
K5
m
K6
C7
K7
C8
K8
C9

0.470146 0.319480 0.251716 0.200015 0.?50294
3.662809 2.628839 2.291117 2.133668
0.472260 0.322923 0.266721 0.229069

3.663890 2.584902 Z.209821
0.391153 0,2678a7 G. ZZ9060

I I I I I 14.56 D27613. DWB82
M

C1O

K1O

Z.za 4.70
I

7.35 I 1’2”’51’5’741’’”5’12’”441z4”z’10. I3

tO.05 <0.05 .0 .05 <0.05 <0.1 .0.1 .0.1 .O. z

:0. z <0. z .0,2 .O. z .0.2 .C.2 .0.3 .1.0

r0,05

:0.2

TABLEIH
ELEMENTVALUES FOR LOW-PASSPROTOTYPE

l?=O.Ol,tiC=l.O, NZm=6,ad=0.7
ELEMENT VALUES FOR LOW-PASS PROTOTYPE

R= O.01, UC=l.O, NZW=4, ad=0.8

R = 0.01 db = 1.0 rad/aec NZm = 4
“c

= 0.0 rad/$ec
“d

W = 0.01 db u = ?.0 rad/sec N2m = 6
,

= 0.7 rad/sac
“d

N 8 10 lZ

81,01121,41,61,81,DI

ITT
,822437 0.826114 0.828876 0,830854
.000000 0.000000 0.000000 0,000000 i
,442156 1.449D37 3,453778 ?,457772
,000000 0,000000 0,000000 0.000000
,826672 1.836631 1.843327 1,848877
,014260 0.005571 0,002752 0.000925
,739896 4.751308 1,758829 1.764924
,076702 0.034008 0.016613 0,007007
,965773 1.969223 1.977459 I .985173

c1
K?
C2
K2
C3

0.600197 0.6107?3 0.817806
0.000cao 0.000000 0.000000
4.398869 1.4196B8 1.433387

c1
K?
C2
K2
C3
1.3
C4

0.767954
o. DOonoo
? .329865
0, 197329
1, 704204
0.669212

K3
C4
K4

K4
C5
k5
C6
K6

1111,250659 0.’l3483l 0.073345 0.035841
.980303 4.849499 1.625952 1.824848I I 12.573544

0.576981 . 3793!38 0.262633 0.166653 0.0978?2

.343179 2.38654q 2.132841 2.053304

.556178 0.393510 0,301335 0.216658

3.414921 2.379979 2.042496
0.452796 o.325i69 0.271374

C7
k7
m
K8
C9
?.9

c10
K’10

K7
C8

I I4.419225I2.83771O I

I 0.446750 0.325935
4,034763
0,371292L Ho I I I

t%

A“erage ~ ~&
delay [sml

Delay
ei-mr[secl ‘D”

Phase <O. ~
.rrnr[deg)

I I I I I I I I I I

.0.1 <0.2 .0.3 .0.3.0.2 .0.1 .0,2 .0.1 .0.1 .0.1 <0.3

(or stopband ampli-adequate improvement of the delay
tude) is the exception.

consistent with the notation of Fig. 1. The prototype

networks have equiripple passband amplitude and con-

stant group delay in the least squares sense over a per-

centage of the passband ranging from 50 to 90 percent.

All the prototypes have passband insertion loss ripple

R = 0.01 dB and cutoff frequency tiC = 1.0 rad/s at the

0.01 -dB point. The choice of R = 0.01 was a compromise

between the conflicting demands of high stopband ampli-

tude selectivity and low passband deviation from constant

delay. The tables are classified according to the number of

transmission zeros at infinite frequency NZ~ and the

passband frequency to which the group delay is constant

in the least squares sense tid. The following combinations

The purpose of this paper is to circumvent, where

possible, the computational effort implicit in the search

for a suitable low-pass prototype, by providing a collec-

tion of element values for the even-degree prototype,

which realize a wide range of passband delay and stop-

band amplitude responses.

II. TABLES OF ELEMENT VALUES

Five tables containing the element values of even-de-

gree networks up to degree N= 20 are presented. The
notation for the element values as used in the tables is
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TABLE IV

ELEMENT VALUES FOR LOW-PASS PROTOTYPE

R=o.ol, &lc=l.o, fvzm=8, ud=o.6

,= ‘J, D1 db u = 1.0 rod/se. . - 5 “d = 0.6 r.d/secN:~

-w+--+-”- 1“1“ 1200 91,5.1 0.321066 0,3 L49d9 U,828085 0,630381 0,83)966

,g I
L1O Ill ,0-?,;,88,2,,

TABLE V
ELEMENT VALUES FOR LOW-PASS PROTOTYPE

R=o.ol, 0,.=1.0, fvzm=lo, @.=o.5

C3
,.3
-.

.4
C5
.5
Cs
.L
,–.

G.83313L
U. O1OOOL

Ic.11.lmwl

l;:;;;:;:
4.993135
0. L04765
1 .a30d80
0.0316”0
2. U29260

1, I ,. ,0.6$8175 0,4\ 1827 0 957341, C 13142G
Ce 2.3 J75Z9 2, L449L5 1.892624
,6 ‘1.553)75 lL,3~B 118 G, Z7< 346
L9 3.61131; J6 ?,4565?.1
?9 0,55:957 0,4 U9690

Llo
klo

3. <5:247
C.447318

of ivzco and ad are tabulated: NZ~ = 2 and Ud = 0.9

(Table [j; NZ~ =4 and ad= 0.8 (Table II); iVZ~ = 6 and

o~ = 0.7 (Table III); NZ~ = 8 and ad= 0.6 (Table IV); and

NZ~ = 10 and ti~ = 0.5 (Table V). The value of u~

associal ed with each choice of NZ~ was found by trial

and error to be close to the largest value for a particular

table which would not allow the maximum-phase devia-

tion from linearity to exceed 0.5 degrees or the maximum

group delay deviation from constant to exceed 0.2. The
maximum phase and delay errors for each network are

tabulated. Plots of the passband group delay and stop-

band insertion loss versus frequency for each network,

accompany the tables to facilitate selection of a prototype.

The tables were generated as follows. The approxima-

tion problem was solved using the Chebyshev rational

Fig. 2. The even-mode ladder network with input admittance Y(s).
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Fig, 3. The pole-zero diagram for the case R = 0.01 dB, WC= 1.0, iW!@

=4, Od=0.8, and N=18.

function and numerical optimization [9]–[ 11]. The least

squares error criterion was used in the optimization pro-

cess. As pointed out by Schmidt [12], the least squares

criterion is expected to be a practical compromise be-

tween the maximally flat and equiripple responses. A

detailed examination of the group delay errors of the

tabulated networks revealed a tendency towards equirip-

ple behavior over most of the band 0< u <d, associated

with the expected increase in error at the edge of the

band. The poles of the optimized transfer function were

used directly to construct [11] the even-mode admittance

function Y(s) of the low-pass prototype, and the network
element values were synthesized from Y(s) [1], [7]. The

even-mode network is shown in Fig. 2.

The tabulated prototypes are restricted to the even-de-

gree case because of practical problems which arise in the

implementation of odd-degree microwave filters [2], [3].

Note that Levy [4] deals with the odd-degree case for one

cross-coupling path by making use of an asymmetrical

structure.
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In order to be realizable by the symmetrical even-de-

gree low-pass prototype network as seen in Fig. 1, the

transfer function numerator must be an even polynomial

in the complex frequency variable s. This condition con-

strains finite real or u axis zeros to occur in pairs with

symmetry about the imaginary or j a axis, finite im-

aginary axis zeros to occur in pairs with symmetry about

the real axis, and finite complex plane zeros to occur with

quadrantal symmetry. The finite zeros of the tabulated

networks are restricted to zeros with quadrantal symmetry

and u axis zeros. In other words, none of the networks

have amplitude responses with finite transmission zeros at

real frequencies. Stopband amplitude selectivity is

achieved by placing an even number of zeros at infinity.

The pole-zero diagram shown in Fig. 3 serves as an

example. The transfer function has degree N= 18, the

number of zeros at infinity NZO = 4, passband ripple level

R =0.01 dB and group delay constant, in the least squares

sense, to ad= 0.9 rad/s. There are 14 finite zeros consist-

ing of one pair on the real axis and three sets with

quadrantal symmetry.

Restriction of the transmission zeros to infinity makes

the prototypes suitable for the design of generalized inter-

digital filters [2], as finite transmission zeros cannot be

realized in this structure. The prototypes can obviously

also be used for the design of generalized direct-coupled

cavity waveguide filters [3]–[5] and generalized combline

filters [6].

III. ANALYSIS OF THE NETWORKS

The response plots (see Figs. 4–8) which accompany the

tables might be found to contain insufficient information.

For example, an expanded scale group delay or phase

deviation plot, or the stopband insertion loss beyond a = 2

rad/s, may be required. In the latter case, the plots may

be extrapolated quite accurately beyond u= 2 by increas-

ing the insertion loss by 6 NZ~ dB/octave.

The necessary information can be obtained by making

use of a simple algorithm for computing the amplitude,

phase, or group delay of the low-pass prototype with

known element values. The algorithm is described below.

Due to the symmetry of the prototype network in Fig.

1, the transfer function t(s) can be written in terms of the

even- and odd-mode admittances Y(s) and Y*(s) as [1]

Y(s) – Y*(S)

‘(s)= [l+ Y(S)] [l+ Y*(S)]
(1)

if the terminating resistors are unity. The even- and odd-

mode networks are simple ladder networks containing

lumped capacitances, frequency independent suscep-

tances, and unity admittance inverters. Fig. 2 shows the

degree N/2 even-mode network for the degree N proto-

type of Fig. 1. The odd-mode admittance Y“(s) is ob-

tained by replacing the complex coefficients of the numer-

ator and denominator polynomials of Y(s) by their com-

plex conjugates.
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Fig. 8. Passband group delay and stopband insertion loss for Table V

R=O.01 dB, WC= 1.0, NZm= 10, and ud=0.5.

Let

Y(s)l,=,u =jA (0) (2)

Y*(s) l,=,@ =jB(ti). (3)

By substitution of (2) and (3) in (1) and manipulation, the

magni [ude squared function It(ti)12, the phase function

+(o), and the group delay function D(u) are found to be

[A(+B(LO)]2
I’(o)l’= [l+ A2(u)][l+B2(a)]

(4)

@(u) = – tan -1
[

1– A(u)B(u)

A (u)+ B(o) I (5)

~A (o) aB((ir)

D(a)= a@ + a’”
1+A2(u)

(6)
l+ B2(@) “

The functions A(o), B(o), A(o) = A(u) – B(o), A’(o)=

M (u)/b, and B ‘(u)= aB(~)/b may be evaluated by the

127

following recurrence equations. To avoid “roumdoff errors

for values of 0>1 the difference between A(~d) and B(w),

A(u) should be evaluated recursively as showln.

Ai=aC, +K1–:
1+1

B,=uCi– Ki–~
1+1

A,=2K, + A ‘i;’
1+1 1+1

A;+ ,
A;= CZ+—

A;+ ,

B,f = c, : ‘;+1
B,: ,

with initial values

for i= N/2–1, ””.,2,1

(7)

A N/2 = “N/2 + “N/2

B~,2 = tiC~,2 – l<N/z

AN/2 = 2KN/2

44/2 = cN/2

B;,2 = CN,2. (8]

The notation used in these equations is consistent with

Fig. 2. The elements C1, K] are at the port of the network.

The network functions are evaluated at the frequency u

by using A(u)=A1, B(Q)=B1, A(L))= A,, A’(u)= A;, and

B’(o) = B; in (4)-(6).

IV. CONCLUSIONS

The element values of a collection of low-pass non-

minimum-phase networks have been tabulated. The

networks may be used as prototypes for the design of

narrow-band bandpass microwave linear-phase filters

using the generalized interdigital, generalized clirect-

coupled cavity waveguide, and generalized combline

structures. For a wide range of amplitude and phase

specifications, the tabulated networks eliminate the need

for computer programs to solve the low-pass approxima-

tion and synthesis problems.
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Band-Limited Deconvolution of Locating
Reflectometer Results

PETER I. SOMLO, SENIOR MEMBER, IEEE

Abstract—The locating reftectometer [1] is a frequency-swept nricro-

wave instrument whieQ by analog Fourier trmssformatio~ converts the

reflection eoefficien$ a fmretfon of frequency r(~), intothe spatiaf distrib-

ution of the reflection coefficient r(x). It wiU be shown that by the method

of deeonvolution an increase in axiaf resolution may resnft. By making use

of the fact that the reaf and imaginary parts of the “locating plot” r(x) are

a HWxt transform pair, a signaf-to-noise ratio improvement is achieved

by averaging the results of complex deeonvolution using only the reaf and

then only the imaginary parts of the locating plots. A nnmber of experi-

mental results are give% illoatrating tbe increase in axiaf resolution when

the method of baud-limited deeonvobrtion is applied to some typical

waveguide components and obstacles.

I. FORMULATION OF THE PROBLEM

L ET US assume that we have an instrument, a locat-

ing reflectometerl (LR) [1], that gives a plot of the

distribution of the (complex) reflection coefficient h(x) of
a component having a number of internal reflections as a

function of distance along the waveguide x. This distribu-

tion will be referred to as the “locating vector.” Assume

Manuscript received April 10, 1978; revised July 6, 1978.
The author is with the National Measurement Laboratory, CSIRO,

Sydney, Australia 2070.
‘The locating reflectometer grew out of two reftectometers, the high

resolution reflectometer [7] and the comparison reflectometer [8], result-
ing in an analog instrument with the minimum of electronic circuitry but

yielding the values and the locations of individual reflections.

that, if more than one reflection is present in the wave-

guide tested, the instrument will record the superposition

of these reflections. Because of the bandwidth limitation

of the instrument, the locating plot of a single lumped

reflection will have some axial spread, since zero spread

would require infinite bandwidth. This response to a sin-

gle lumped reflection we shall call the “instrument func-

tion” g(x) which some other workers have referred to as

the “pulse response” or the “aperture function.” Since we

have assumed that the instrument superimposes individual

lumped reflection coefficient plots of axial distributions

h(x)= ~ [a,g(x–x,)l (1)
,=1-

i.e., k individual reflection coefficient axial distributions

with different complex magnitudes and central positions

are added to form the observed locating vector h(x). In

other words, we may regard h(x) as the sum of a number

of scaled and shifted identical functions. It is well known

[2] that the convolution of a function with an impulse

function (Dirac function) will duplicate the given func-

tion, and, similarly, the convolution of a given function

with a number of weighted and shifted impulse functions

will produce the sum of the weighted and shifted original

functions. Designating the set of weighted and shifted

impulse functions as f(x), the observed locating vector is
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